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Case-based reasoning is emerging as a leading methodology for the application of artificial intelligence. We describe an investi-
gation into the application of case-based reasoning in airport weather forecasting. Knowledge about temporal features that
human forecasters use to construct analogous climatological scenarios is encoded in a fuzzy similarity measure. The fuzzy simi-
larity measure is used to locate the k-nearest neighbours from the historical database. These nearest neighbours are in turn
adapted to produce values for the forecast parameters. Five sets of experiments show inter alia that the proposed WIND-1 sys-
tem produces highly accurate forecasts based on real climatological data, using a standard technique for assessing the accuracy

of forecasts produced by human forecasters.

Keywords: case-based reasoning, weather forecasting, fuzzy similarity measure

1. OVERVIEW

Weather forecasting is a complex process that involves
numerous specialized fields of expertise. The output from
computationally intensive numerical weather prediction
(NWP) models forms the starting point of the forecasting
process. Expert forecasters have both a general knowledge
of large-scale weather systems and specific knowledge
about the idiosyncratic behavior of local scale weather
phenomena. These expert forecasters, in effect, bridge the
gap on the local scale between simple persistence forecast-
ing and the output from the NWP models [1]. The types of
forecasts commonly made by expert forecasters include
terminal aerodrome forecasts (TAFs), public forecasts and
marine forecasts. In addition to these, many specialized
forecasts are produced for power companies, oilrigs and
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others. Because much of the knowledge and expertise used
by weather forecasters is analogical the possibility of aug-
menting the forecasters experience with the detailed
knowledge of similar weather situations from several prior
decades of recorded weather data seems most promising.
This is the possibility offered by applying case-based rea-
soning techniques to the problem of weather forecasting.

Recently intelligent systems (IS) using artificial intelli-
gence (Al) techniques have been used to forecast visibility,
marine fog, precipitation, severe weather and other clima-
tological conditions [e.g., 2, 3, 4, 5]. The IS modeling
approach is complementary to NWP modeling that uses
computationally intensive dynamical, thermodynamical
and statistical algorithms to produce large scale (hemi-
spherical) static forecasts. These large-scale static fore-
casts are not sufficiently stable on a small scale where
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local effects and recency become significant or even pre-
dominant. The larger scale numerical models can be scaled
down by using more detailed numerical models that take
the output from the large-scale models and also include
local effects and the most recent data from weather sta-
tions in the immediate area. The smaller-scale numerical
models are not intuitive, need consistent and complete data
and may be difficult to apply in real time. On the other
hand, using IS to model smaller scale climatology has
many of the characteristic advantages that typically arise
when Al techniques are applied. For example, the resulting
climatological models are intuitive because the models are
constructed from human experts using knowledge acquisi-
tion techniques. Like the human experts themselves, these
models can cope with uncertainty, incompleteness and
recency and generally are not computationally intensive.
In addition to this, CBR models are inherently analogical
are thus possibly the most intuitive of all IS models partic-
ularly when applied to problem situations, such as ana-
logue forecasting, in which reasoning is predominantly
analogical.

The WIND project [6], which began in 1997, addresses
the problem of forecasting horizontal visibility and cloud
ceiling heights at airport terminals through the application
of CBR that uses a fuzzy similarity metric with built in cli-
matological knowledge. The case-based system retrieves
stored cases from the historical database using a k-nearest
neighbour retrieval mechanism based on the fuzzy similar-
ity metric. Each retrieved case represents a previously
encountered climatological situation that is similar to the
current situation. The retrieved cases are adapted to con-
struct a forecast scenario. The implemented system
(WIND-1) is extensively tested using standard meteoro-
logical quality control statistics [7] on the available histor-
ical data (1961-1996).

This paper first describes the problem of terminal aero-
drome forecasting and persistence climatology. Secondly it
presents a summary of pertinent aspects of case-based rea-
soners. Thirdly it describes details of the WIND-1 system
itself. Fourthly we describe the experimental testing of the
system and inter alia the quality of the forecasts produced
by WIND-1. We close with a discussion of the lessons
learned from the project and future work.

2. TERMINAL AERODROME
FORECASTING

The atmosphere is in a state of constant change driven
globally by solar energy and by energy derived from the
rotation of the earth. Latitude, ocean currents and land-
masses determine weather features on a global scale. NWP
models take as input readings from weather stations,
weather buoys, satellite images, atmospheric probes and
other sources. These values serve as initial conditions to
systems of equations that describe the atmosphere. The
models are run statically and produce forecasts on a six
hourly basis that serves as the foundation of all forecasts.
Output from these models is useful for large scale and
longer-term forecasts. However, the complete description
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of the atmosphere in this form is far beyond current capa-
bility of such models, in part because the accuracy of the
models is inherently dependent upon the initial conditions
that are inherently incomplete, i.e., the systems are chaotic.

For fine grain forecasting, knowledge of the climate of
the immediate region is used by forecasters and the tech-
nique is known as climatological forecasting, according to
Huschke [8]. Huschke further defines a “persistence fore-
cast” as “a forecast that the future weather conditions will
be the same as the present conditions.” Thus persistence
climatology (PC) bases predictions for the present case on
the outcomes of similar past cases. To emphasize, persist-
ence climatology is an inherently analogical method of
weather forecasting based on similar past weather situa-
tions. Persistence climatology is widely recognized as a
formidable benchmark for very-short-range prediction of
ceiling and visibility, which are critical attributes of TAF’s
[9]. PC is used as the basis of various refinements that use
weather records and observational data from surrounding
stations to define weather categories that are used for fore-
casting [9,10].

Of all types of forecast TAFs are required to be most
precise both in terms of measurable weather conditions
and in terms of timing. TAF forecasts of the height of low
cloud ceiling are expected to be accurate to within 100
feet; forecasts of the horizontal visibility on the ground,
when there is dense obstruction to visibility, such as fog or
snow, are expected to be accurate to within 400 metres;
and forecasts of the time of change from one flying cate-
gory to another are expected to be accurate to within one
hour. In contrast public and marine forecasts can be much
less precise. In public forecasts, for example, it may be
sufficient to predict “variable cloudiness this morning,”
and in marine forecasts, it may be sufficient to predict “fog
patches forming this afternoon.”

When ceiling and visibility at a busy airport are low, in
order to maximize safety, the rate of planes landing is
reduced. When ceiling and visibility at a destination air-
port are forecast to be low at a flight’s scheduled arrival
time, its departure may be delayed in order to minimize
traffic congestion and related costs. An examination of the
causes and effects of flight delays at the three main air-
ports serving New York City concluded that a correctly
forecast timing of a ceiling and visibility event (i.e., a sig-
nificant change) could be expected to result in a savings of
approximately $480,000 per event at La Guardia Airport
[11]. Based on a related study, the U.S. National Weather
Service estimated that a 30 minute lead-time for identify-
ing cloud ceiling or visibility events could reduce the num-
ber of weather-related delays by 20 to 35 percent and that
this could save between $500 million to $875 million
annually [12].

A goal of our research is to enable an improvement in
the quality of TAFs in terms of accuracy and timeliness.
Persistence climatology is clearly an important technique
used in the production of short-term forecasts, including
TAFs. It is in essence analogical or case-based and uses
detailed knowledge of local historical conditions and more
recent readings from local weather stations and other
sources to bridge the gap between the hemispherical scale
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of the NWP models and the details required by local users.
We therefore propose that the strengths and abilities of
CBR complement the techniques currently used in persist-
ent climatology and can be used to improve the accuracy
of short-term forecasts. In the following sections we focus
on the production of short-term TAFs.

3. CASE-BASED REASONERS

Case-based reasoning [13] has been used to solve problems
in diverse areas including decision support, help desk sup-
port, product cataloguing and maintenance support [14,
15]. In order to solve a current problem a case-based rea-
soner requires a library of past problems and the solutions
that were used to solve the past problems. The case-based
reasoner works by using a measure of similarity to retrieve
past problems that are most similar to the current problem.
The reasoner then combines and adapts the solutions to the
most similar past problems to generate a proposed best
solution to the current problem. Clearly the designs of the
similarity metric and the adaptation algorithm are crucial
to the functionality of any case-based reasoner. Existing
case-based reasoners differ widely in the design of these
two component mechanisms.

Similarity metrics used in case-based reasoners for
retrieval vary greatly. Euclidean norms and Hamming dis-
tances are the most common; rule-based metrics have been
discussed [16]; some metrics use domain knowledge [17];
similarity measures have been adapted to use fuzzy set
based formalisms [18] and others use hybrid fuzzy meas-
ures [19]. Our similarity measure most closely resembles
those of [18] and may best be described as a hybrid fuzzy
measure with thresholds that exploit domain based knowl-
edge elements. For retrieval we use a k-nearest neighbour
algorithm [20] with the similarity metric.

Forgetting mechanisms [13] are used in many case-
based systems to help control the amount of memory used
by the case library. In our proposed system forgetting is
achieved by the use of recency in the similarity algorithm
while experiments on the case library suggest that the size
of the library may be reduced by removing older cases up
to a point without adversely affecting the accuracy of the
forecasts produced by the system.

A FUZZY CASE-BASED SYSTEM FOR WEATHER PREDICTION

During the problem-solving process, a number of
similar solutions are retrieved not one of which is com-
pletely valid. The retrieved solutions need to be adapted
to arrive at a valid solution to the current problem.
Adaptation mechanisms are often user-driven and can
be rule-based or rely on generalization and refinement
heuristics [21]. Adaptation mechanisms have been cate-
gorized as compositional or transformational [22].
Compositional adaptation occurs when knowledge is
used to combine portions of approximate solutions to
achieve the desired solution. Transformational adapta-
tion occurs when more comprehensive knowledge needs
to be used to add extra components to the retrieved
solutions to achieve a satisfactory result. In WIND-1 we
propose a smoothing adaptation mechanism that is sup-
plemented with knowledge of weather scenarios and
case recency.

4. FUZZY METHODOLOGY FOR

TEMPORAL CASES

Airport weather observations (METAR’s) are routinely
made at all major airports in real time on an hourly
basis. A new set of observations is added to the database
each hour and hence a new problem case is also generat-
ed each hour. In this research we used an archive of
315,576 consecutive hourly airport weather observations
made at Halifax International Airport (CYHZ, located at
44°53’N 63°30°W) during the 36-year period from 1961
to 1996.

4.1 Definitional case structure
Let a(r) = (a,(t), a (1), a, (1)) represent a set of m attributes
observed at one time ¢. In Table 1, each row contains one
hourly observation made at time t, and each observation
contains m = 12 attributes (attributes are grouped into 10
columns, but temporal attributes include time of year and
time of day, and weather attributes include precipitation
type and intensity, for a total of 12).

A case to predict for is a series of 13 consecutive sets of

Table 1 Consecutive hourly observations for Halifax Airport. (Note 1 Meaning of weather tokens: ZR- is light freezing rain, F is mist, and R- is light rain.)

- Horizon . . Wind
Y/M/D/H (;Ell;?ff Visby. W]”(‘)d dDi’ Speed

: Km x 10 deg km/h
64/1/2/0 15 24.1 14 16
64/1/2/1 13 6.1 14 26
64/1/2/2 2 8.0 11 26
64/1/2/3 2 6.4 1 24
64/1/2/4 2 48 11 32
64/1/2/5 2 32 14 48
64/1/2/6 3 1.2 16 40
64/1/2/7 2 2.0 20 35
64/1/2/8 2 4.8 20 29
64/112/9 4 4.0 20 35
64/1/2/10 6 8.0 20 35
64/1/2/11 8 8.0 20 32
64/1/2/12 9 9.7 23 29

Dry Bulb Dgw MSL Cloud ]
deg C Point Press. Amt. Weather
deg C kPa tenths

-4.4 -5.6 101.07 10

2.2 -2.8 100.72 10 ZR-
-1.1 =22 100.39 10 ZR-F
0.0 -0.6 100.09 10 ZR-F
1.1 0.6 99.63 10 R-F
2.8 2.2 99.20 10 R-F
3.9 3.9 98.92 10 R-F
44 4.4 98.78 10 F
3.9 33 98.70 10 F
33 2.8 98.65 10 R-F
2.8 22 98.60 10 F
2.8 2.2 98.45 10 F
2.2 1.7 98.43 10 F
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hourly observations preceding and including time ¢ as rep-
resented by:

a(t) = (a(t - 12), a(t - 11), ..., a(t))

4.2 Similarity measure

Twelve similarity-indicating attributes are identified in
Table 2. All of these attributes are almost continuous
except for precipitation.

For each continuous attribute, X, the expert specifies
values of Cip €0 and Cis that are thresholds for considering
two such attributes to be very near, near, and slightly near
each other, respectively (see Figure 1). The similarity
measure that we propose is as follows:

w(a(), @(r) = A2y A2, (aft-j), aff =)V ()

where a(t) = (a(t — 12), a(t — 11), ..., a(t)) and My is an
expert-defined forgetting function that assigns less weight
to less recent weather data.

The k-nearest neighbour algorithm then searches the set
of all past cases resulting in a set:

Nk (a(t)) = {a(ty), (a(t)), ..., a(t,_,)}

of potential analogues to case a(t). The search is efficient
because computation of the minima allows short circuit
evaluation of the similarity measure: an evaluation
process is terminated and a candidate analogue case is
ruled out of the k-nn set if any measured similarity val-
ues between compared attributes are less than the lowest
similarity of the k-nn cases found thus far in case base
traversal.

The value of the jth forecast parameter at time ¢ + n is
then computed as a(t + n) where

1 o S
a(t+n)= _20 ula(t), (@) Xaft,+n) + X u(a(t), (at)))

i=0

Or, in words, aj(t + n) equals a sum of analagous cases’
past parameters, where each case is weighted according to
its overall degeree of similarity in the present case.

Table 2 Twelve attributes of an airport weather observation (METAR)

1.0

very near

¥

near

Wi(xir - xi2) 0.5 *s/ight/y near

0.0

-Ci3z -Cp -ci 0 ¢ cp cp3

Xi1 - Xi2
Figure 1 Fuzzy membership function for measuring degree of similarity
between two continuous attributes

Table 3 Flying categories (note 2: VFR is short for Visual Flight Rules and
IFR is short for Instrument Flight Rules. VFR and IFR are two exclusive
categories of flying conditions. When IFR conditions are forecast, pilots
need extra training and instruments

ciill]il;g visibility (km) flying category
<200 or <32 below alternate
>200 and >3.2 alternate
>330 and >438 VFR'

S. EXPERIMENTS

The quality of TAFs is determined by the accuracy of the
forecast weather elements and the timeliness of issue. The
Meteorological Service of Canada measures TAF quality
in four ways: with three ceiling and visibility accuracy sta-
tistics and with a speed-of-amendment statistic [6]. The
commonest cause for amendments is an incorrect forecast
of ceiling or visibility [23]. Timeliness refers to the time
between TAF issue and the decision deadline of the intend-
ed user, or in other words, the amount of time the TAF can
be used to affect critical decisions about flight scheduling.
In our experiments we address accuracy of forecasts of
three significant flying categories (see Table 3).

Each experiment consists of a forecasting scenario. Five
sets of experiments are conducted. In each set of experi-
ments we systematically change the fixed parameters of
WIND-1 and measure the resultant effects on forecast
accuracy. The fixed parameters (independent variables)
are: the attribute set, the number of analogues used to
make forecasts, the size of the case base, and the fuzzy
membership functions. The output (dependent variables)
are, for each individual forecast, forecast values of cloud

Category Attribute Units

temporal date Julian date of year (wraps around)
hour hours offset from sunrise/sunset

cloud ceiling cloud amount(s) tenths of cloud cover (for each layer)

and visibility cloud ceiling height height in metres of > 6/10™ cloud cover
visibility horizontal visibility in metres

wind wind direction degrees from true north
wind speed knots

precipitation precipitation type “nil”, “rain”, “snow”, etc.
precipitation intensity “nil”, “light”, “moderate”, “heavy”

spread and dew point temperature degrees Celsius
temperature dry bulb temperature degrees Celsius
pressure pressure trend kiloPascal - hour ™
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cig8vis
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temps +
cigavis
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cig&vis
wind +
cigvis
cig & vis
pres +
cigavis
pepn +
cigavis
temps +
cigvis
time +
cigavis
wind +
cighvis

attributes attributes

(¢) Probability of Detection
of “below alternate”

(d) False Alarm Ratio

of “below alternate”
Figure 2 Effect of varying attribute set. Graphed values are average
accuracy of 0-to-6-hour predictions. System configuration: k = 16,
length of case base = 35 years. (Note: Combinations of weather attributes
considered are: 1) cig & vis — cloud ceiling height and visibility alone;
2) pres + cig & vis — mean sea level pressure and cloud ceiling height
and visibility; 3) pcpn + cig & vis — precipitation type and cloud ceiling
height and visibility; 4) temps + cig & vis — dry bulb temperature and
dewpoint temperature and cloud ceiling height and visibility; 5) time +
cig & vis — time of day and time of year and cloud ceiling height and
visibility; 6) wind + cig & vis — wind speed and direction and cloud
ceiling height and visibility; and 7) all of the aforementioned attrib-
utes.)

ceiling and visibility, and, for each set of experiments, a
summary of the accuracy of all the forecasts made.

In each set of experiments, 1000 hours are chosen at
random from the 1996 weather archive and are each used
as a forecast hour. So, in each set of experiments, 1000
simulated forecasts are produced. For purposes of compar-
ison, the same 1000 randomly-chosen hours are used in
each set of experiments. This is a control so that the effect
of varying other input can be tested.

In each individual experiment, a case is taken from the
1996 data and is used as a present case. It is input to
WIND-1. During the forecast process, the outcome of the
present case is hidden from WIND-1. WIND-1 produces a
forecast for the present case based on the outcomes of the
k-nn most analogous past cases for the present case. After
the forecast process, the accuracy of the forecast is verified
by comparing the forecast with the then unhidden outcome
of the present case using standard meteorological quality
control statistics [6]. In the following figures, high forecast
accuracy is indicated by high reliability, high probability
of detection, and low false alarm ratio.

For a given event category, A, reliability equals the number
of times when A is forecast to occur and it did occur divided
by the sum of the number of times A is forecast to occur and
is did occur and the number of times it was forecast to occur
and it did not occur, e.g., if the reliability of a forecast of A is
90%, that means that 90% of the time that A is forecast to
occur, it occurs, i.e., such a forecast is 90% reliable.
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100% 100%
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(a) Reliability of “alternate™

100% 30% l
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(b) Reliability of “VFR”
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1 2 4 8 16 32 1 2 4 8 16 32
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(¢) Probability of Detection (d) False Alarm Ratio

of “below alternate” of “below alternate”

Figure 3 Effect of varying size of case base. Graphed values are average
accuracy of 0-to-6-hour predictions. System configuration: k = 16

Probability of detection equals the number of true posi-
tives divided by the sum of the number of true positives
and the number of false negatives, i.e., the probability that
an event is correctly forecast given that it does occur.

False alarm ratio equals the number of false positives
divided by the sum of the false positives and the true posi-
tives, i.e., the probability that an event does not occur
given that it is forecast to occur.

5.1 Attribute set

The first set of experiments varies the attribute set and
shows that prediction accuracy increases as the number of
attributes used for comparison increases (see Figure 2).

5.2 Size of the case base

The purpose of this experiment is to determine the effect of
varying the size of the case base in order to assess the impor-
tance of having a large case base. As the size of the case base
increases, supposedly, more and more potential good ana-
logues are available for the fuzzy k-nn algorithm upon which
to base predictions. This experiment addresses the question:
“Is the fuzzy k-nn predictions method effective with a small
case base, or does it require a large case base?”” This question
is of practical importance because sizes of weather archives
vary greatly from one airport to another. The size of the case
base is varied and the results are shown in Figure 3.
Accuracy generally rises as the size of the case base size
increases from 1 year to 32 years, although there appears
to be a slight dip in accuracy for a case base size of 8 years
(b) and (c). The general rise in accuracy suggests that hav-
ing a large case base is beneficial. The slight dip in accura-
cy for a case base size of 8 years though only 1%, may
suggest that, for the purposes of predicting for weather sit-
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- - - Simple persistence —— Fuzzy k-nn (WIND-1)

Figure 4 Effect of varying size of case base. Graphed values are aver-
age accuracy of 0-to-6-hour predictions. System configuration: k = 16

uations in the year 1996, the four-year period 1992-1995
contains a higher proportion of good analogues than the 8-
year period 1988—-1995.

Significantly, the relatively high accuracy with a case
base size of 4 years suggests that the WIND-1 system
could be useful for predicting at airports with relatively
small weather archives. Most airports have recorded
weather for at least 4 years.

53 Comparing WIND-1 with persistence
climatology

As explained in section 2, persistence climatology is an
analogue forecasting technique that is widely recognized
as a formidable benchmark for short-range weather predic-
tion. In this set of experiments we compare the perform-
ance of WIND-1 with simple persistence forecasting. The
results (in Figure 4) show that in each of the categories the
performance of WIND-1 is significantly better than that of
simple persistence forecasting.

The accuracy of the system is compared to a benchmark

20% +———T T T T T T
0 6 12

hours into forecast

- - - Simple persistence —— Fuzzy k-nn (WIND-1)

Figure 5 Probability of Detection of the ‘below alternate’ using non-
fuzzy sets
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technique: persistence. Graphed values are standard statis-
tical measures of accuracy of prediction for each hour in
the 0-to-12-hour projection period. Persistence forecasting
(forecasting no change) is a standard benchmark for meas-
uring short-term forecast accuracy [24].

5.4  Using crisp sets

This set of experiments (of which we show only one)
shows the effect of using non-fuzzy sets against persist-
ence. Non-fuzzy sets are made from fuzzy sets by trans-
forming any values below 0.5 to 0.0 and any values at or
above 0.5 to 1.0. Comparison of Figure 4c and Figure 5
suggests that, compared to persistence, and compared to
using crisp membership for selecting analogues, the use of
fuzzy membership functions significantly improves the
performance of the WIND-1 system.

5.5 Size of k

In this set of experiments we vary k, the number of nearest
neighbors that are used as the basis of predictions (k = 1,
2, 4, 8, ..., 256) and finds that maximum accuracy is
achieved with k = 16. This suggests that WIND-1 is effec-
tive at identifying and ranking nearest neighbors, or, in
meteorological terms, it finds the best analogue ensemble.
Assuming that fuzzy k-nn similarity metric is effective, if
k is too small, prediction result accuracy should suffer
from sample size being too small (i.e., not representative),
and if k is too large, prediction result accuracy should
taper off because of the inclusion of an increasing number
of decreasingly similar cases. Accordingly, Figure 6 shows
that the fuzzy k-nn similarity metric is effective.

6. CONCLUSION

Based on our literature review, experiments, and the
results presented in our thesis, we conclude that querying a
large database of weather observations for past weather
cases similar to a present case using a fuzzy similarity
measure that is designed and tuned with the help of a
weather forecasting expert together with a k-nearest neigh-
bors algorithm and weighted adaptation can increase the
accuracy of predictions of cloud ceiling and visibility at an
airport.

Of significance to CBR: We have shown how fuzzy log-
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ic can impart to CBR the perceptiveness and case-discrim-
inating ability of a domain expert. The fuzzy k-nn tech-
nique described in this thesis retrieves similar cases by
emulating a domain expert who understands and interprets
similar cases. The main contribution of fuzzy logic to CBR
is that it enables us to use common words to directly
acquire domain knowledge about feature salience. This
knowledge enables us to retrieve a few most similar cases
from a large temporal database, which in turn helps us to
avoid the problems of case adaptation and case authoring.
The k-nn algorithm, even though it is of approximate
Order(n) complexity, makes superior predictions with
practical speed — with less than one minute of computa-
tion. This speed is achieved by short circuit evaluation of
the infima-expressions, using strategical ordering of the
steps in the case-to-case similarity-measuring test and by
stopping any test as soon as a step reveals that a case is
dissimilar enough to be ruled out of the k-nn set.

Of significance to meteorology and the aviation indus-
try: such a fuzzy k-nn weather prediction system can
improve the technique of persistence climatology (PC) by
achieving direct, efficient, expert-like comparison of past
and present weather cases. PC is an analogue forecasting
technique that is widely recognized as a formidable bench-
mark for short-range weather prediction. Previous PC
based systems have had two built-in constraints: they rep-
resented cases in terms of the memberships of their attrib-
utes in predefined categories and they referred to a
preselected combination of attributes (i.e., defined and
selected before receiving the precise and numerous details
of present cases). The proposed fuzzy k-nn system com-
pares past and present cases directly and precisely in terms
of their numerous salient attributes. The k-nn method is
not tied to specific categories nor is it constrained to using
only a specific limited set of predictors. Such a system for
making airport weather predictions will let us tap many,
large, unused archives of airport weather observations,
ready repositories of temporal cases. This will help to
make airport weather predictions more accurate, which
will make air travel safer and make airlines more prof-
itable.

We plan to pursue this research and improve WIND-1
by testing its prediction accuracy at other airports;
enabling it to learn autonomously; and incorporating addi-
tional predictive information, such as user-provided hints,
projections of weather radar images of precipitation, pro-
jections of satellite images of cloud, and guidance from
large-scale computer models of the atmosphere.
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